Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Summary Herbivore‐induced plant volatiles act as danger signals to prime defense responses in neighboring plants, yet in many cases the mechanism behind this priming is not known. Volatile signals may be recognized directly by receptors and/or converted into other active compounds. Here we investigate the metabolic fate of volatile indole, a known priming signal in maize (Zea mays), to determine if its conversion to other compounds could play a role in its priming of defenses.We identified benzoxazinoids as major products from volatile indole using heavy isotope‐labeled volatile indole and Pathway of Origin Determination in Untargeted Metabolomics (PODIUM) analysis. We then used benzoxazinoid biosynthesis maize mutants to investigate their role in indole‐mediated priming.Labeled volatile indole was converted into DIMBOA‐glucoside in abx2(benzoxazinone synthesis2)‐dependent manner. Thebx2mutant plants showed elevated green leaf volatile (GLV) production in response to wounding andSpodoptera frugiperdaregurgitant irrespective of indole exposure.Thus, volatile indole is converted into benzoxazinoids, and part of its priming mechanism may be due to the enhanced production of these phytoanticipins. However, indole‐mediated enhanced GLV production does not rely on the conversion of indole to benzoxazinoids, so indole also has other signaling functions.more » « less
 - 
            Microbial metabolism can shape cues important for animal attraction in service-resource mutualisms. Resources are frequently colonized by microbial communities, but experimental assessment of animal-microbial interactions often focus on microbial monocultures. Such an approach likely fails to predict effects of microbial assemblages, as microbe-microbe interactions may affect in a non-additive manner microbial metabolism and resulting chemosensory cues. Here, we compared effects of microbial mono- and cocultures on growth of constituent microbes, volatile metabolite production, sugar catabolism, and effects on pollinator foraging across two nectar environments that differed in sugar concentration. Growth in co-culture decreased the abundance of the yeast Metschnikowia reukaufii, but not the bacterium Asaia astilbes. Volatile emissions differed significantly between microbial treatments and with nectar concentration, while sugar concentration was relatively similar among mono- and cocultures. Coculture volatile emission closely resembled an additive combination of monoculture volatiles. Despite differences in microbial growth and chemosensory cues, honey bee feeding did not differ between microbial monocultures and assemblages. Taken together, our results suggest that in some cases, chemical and ecological effects of microbial assemblages are largely predictable from those of component species, but caution that more work is necessary to predict under what circumstances non-additive effects are important.more » « less
 
An official website of the United States government 
				
			